Partition

Definition

A partition in the UOR framework is a decomposition of the ring R_n into disjoint components. The class Partition represents this decomposition.

Four Components

Every partition of R_n has exactly four component sets:

ClassDescription
IrreducibleSetElements with no non-trivial factorization
ReducibleSetElements that factor into smaller pieces
UnitSetInvertible elements (units of the ring)
ExteriorSetElements outside the kernel

These four sets are mutually owl:disjointWith and their cardinalities sum to 2^n.

Ontology Properties

PropertyDomainRangeDescription
irreduciblesPartitionIrreducibleSetLink to irreducible set
reduciblesPartitionReducibleSetLink to reducible set
unitsPartitionUnitSetLink to unit set
exteriorPartitionExteriorSetLink to exterior set
cardinalityComponentxsd:nonNegativeIntegerElement count
densityComponentxsd:stringDensity as fraction
memberComponentpartition:ComponentMember element
sourceTypePartitiontype:TypeDefinitionSource type
quantumPartitionxsd:nonNegativeIntegerRing quantum level

Example: R_4

For R_4 = Z/16Z (n=4, 16 elements):

<https://uor.foundation/instance/partition-R4>
    a                   partition:Partition ;
    schema:ringQuantum  "4"^^xsd:nonNegativeInteger ;
    partition:irreducibles  <...irred-set-R4> ;
    partition:reducibles    <...red-set-R4> ;
    partition:units         <...unit-set-R4> ;
    partition:exterior      <...ext-set-R4> .

Role in Resolution

The DihedralFactorizationResolver produces a Partition as its output. The partition is then used by: